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SUMMARY

Some recent developments in acceleration of convergence methods for vector
sequences are reviewed. The methods considered are the minimal polynomial
extrapolation, the reduced rank extrapolation, and the modified minimal poly-
nomial extrapolation. The vector sequences to be accelerated are those that
are obtained from the iterative solution of linear or nonlinear systems of
equations. The convergence and stability properties of these methods as well
as different ways of numerical implementation are discussed in detail. Based
on the convergence and stability results, strategies that are useful in
practical applications are suggested. Two applications to computational fluid
mechanics involving the three-dimensional Euler equations for ducted and
external flows are considered. The numerical results demonstrate the useful-
ness of the methods in accelerating the convergence of the time-marching
techniques in the solution of steady state problems.

1. INTRODUCTION

tet RO denote the d-dimensional Cartesian space and let Q be a subset
of R4, Denote the boundary of Q by 0dQ2. Let u(t) be the solution to the
initial boundary value problem (IBVP)

Q.

P+ o =0 in 0

(o

ACu) =0 on 3Q (boundary condition), (1.1
M(ud) =0 at t =0 (initial condition).
Here ¢, A, and M are linear or nonlinear operators (differential, integral,

etc.), and t denotes time.

*Work funded under Space Act Agreement C99066G; present address: Computer
Science Dept., Technion - Israel Institute of Technology, Haifa, Israel.



Assume that the IBVP in equation (1.1) has a time-independent (steady
state) solution that we shall denote u*. Then u* s the solution to the
boundary value problem (BVP)

¢u*) =0 in Q,
(1.2)
ACu*> =0 on 3Q (boundary condition).

u* = 1im u(t), one of the widely used techniques for determining

to
u* has been one in which the IBVP 1in equation (1.1) is solved by a time-
marching technique. Specifically, equation (1.1) is discretized to give the

jterative scheme

Since

ul+1l = y(uM, n=20,1, ..., (1.3

where u" s the (discrete) approximation to u(nAt) and At > 0 is the time
increment. The initial approximation u0 needs to be provided in an
appropriate way. Obviously, when the discretization scheme in equation (1.3)
is stable lim u" = U, where U 1is the fixed point of the function (2) and

N>
in addition is a d1screte approximation to u*. 1In practice, when
[uM+1 - unf|/]]ul - u9|| < e, for some prescribed e > 0, u" is taken to be
an acceptable approximation to . Note that uM+1 — y? = y(u™ - u", which
is the residual of (z) - z for z = uN, and ||e®|| denotes some appropriate

vector norm.

When the discretization scheme in equation (1.3) is stable, for n suffi-
ciently large, u" is close to U, hence
UM+l o gun) = w(@) + ¢ (@D WN = T + eq = AN + b + g, (1.4)

where A = ¢'(l) is the Jacobian of g at U, b = ¢ - ' (U, and
en satisfies ||ep]|| < C|JuM - G||2 for some fixed constant C. Obviously

A and b are independent of n. That is to say, the un, for sufficiently
large n, satisfy (approximately)

N+l = AuN + b, (1.5)

Thus
[Jul = G|] = 0{pNly' (W1} as n >, (1.6)

where, for any matrix B, p(B) denotes its spectral radius.

Normally p[¢(U)] is very close to 1, although it is strictly less than
1. 1In addition, in some cases it can be shown that ply'(W)] tends to 1 as the
meshsize of the discretization tends to zero. This causes the sequence u0, u],
ul, . .. , to converge to U very slowly. One simple way to overcome this
problem is by use of convergence acceleration (or equivalently extrapolation)
methods that do not require that changes be made in the basic iterative scheme
of equation (1.3). In the next section we shall describe three such methods,
namely, the minimal polynomial extrapolation (MPE) of Cabay and Jackson
(ref. 3), the reduced rank extrapolation (RRE) of Eddy (ref. 5) and Mesina
(ref. 12), and the modified minimal polynomial extrapolation (MMPE) of Sidi,



Ford, and Smith (ref. 19). A slightly different version of RRE was earlier
proposed by Kaniel and Stein (ref. 11). All three methods operate on the given
vector sequence uY, u', u¢, . . . , only, irrespective of how this sequence

is obtained (or, in the context of the discretization scheme (eqg. (1.3)),
irrespective of what ¢ 1is). This is an important property of these methods
as it allows them to be applied in conjunction with iterative methods for both
linear and nonlinear problems with the same ease. We must add, however, that
the rates of acceleration that can be achieved by using these methods depend

on the sequence in consideration. Hence, in the context of equation (1.3), it
is the structure of ¢ that determines the rates of acceleration.

In the next section we shall give a brief description of MPE, RRE, and
MMPE. These descriptions are based on the developments of the survey paper of
Smith, Ford, and Sidi (ref. 20) and of ref. 19 and of Sidi (ref. 15). Further
generalizations that are proposed in reference 19 will also be mentioned. The
convergence and stability properties of these methods have been analyzed in
references 15 and 19, Sidi and Bridger (ref. 18), and Sidi (ref. 16). Some of
these results will be reviewed in section 3. In section 4 we shall present
some applications to certain three-dimensional fluid mechanics problems.

Extrapolation methods have recently been used by several authors in
computational fluid mechanics applications, see, for example, Hafez et al.
(ref. 7), Wong and Hafez (ref. 22), Wigton, Yu, and Young (ref. 21), Jespersen
and Buning (ref. 10), and Reddy and Jacocks (ref. 14). One of the methods
described in the present work, namely, MPE, with some variation, is employed
in references 10 and 14.

Before closing this section we mention that the survey paper (ref. 20)
discusses in detail MPE and RRE, as well as the well known scalar epsilon
algorithm (SEA) of Wynn (ref. 23) and its two vector versions, the vector
epsilon algorithm (VEA) of Wynn (ref. 24) and the topological epsilon algorithm
(TEA) of Brezinski (ref. 2). SEA and VEA have been used in accelerating the
convergence of some numerical schemes in computational fluid mechanics, see,
e.g., Hafez et al. (ref. 7). As explained in reference 20 and in Ford and Sidi
(ref. 6), the epsilon algorithms are expensive both storagewise and timewise.
They need about twice as much storage as MPE, RRE, or MMPE, and their vector
operation counts are several times those of MPE, RRE, or MMPE.

2. DESCRIPTION OF VECTOR EXTRAPOLATION METHODS

We shall now give a brief description of MPE, RRE, and MMPE based on the
developments in references 20, 15, and 19.

Let xg, xy, X2, . . . , be a vector sequence in the complex N-dimensional
Euclidean space cN. Assume that this sequence converges, and denote its limit
by s. Using the vectors xj only, MPE, RRE, and MMPE produce approximations
to s, which are determined as follows:

Define

Ui = AX§ = Xje1 — X5, Wj = Auj = AZX1, i=0,1,2, ... . (2.1



MPE - Minimal Polynomial Extrapolation

Pick a positive integer k < N and form the matrix U by

(2.2)

U= [un E Unel E Un+k—1]

and solve the overdetermined (and in general inconsistent) system of equations

UC = -Un+k, (2.3)
T . .
where ¢ = (co, Cys - , Ck-l) , by linear least squares. MWith Co» C1>
.+ gy determined, set ¢ =1, and let
k
. = C. - j =0,1, . . ., k. (2.4)
Y3 T //sgg € J=0
Finally set
>
S = YiX s, (2.5)
n,k 2 jon+]
where Sh K is the desired approximation to s. Note that
k
D oy =1 (2.6)
i=0 J

as is implied by equation (2.4), i.e. SnLk is a weighted "average" of the
vectors Xp, Xpsls - -+ - 5 Xpako N which’the weights are not necessarily real

and nonnegative.

If we define the inner product associated with CN to be

N T i
(y,2) = y*z }: (2.7)
i N ] N\ T
where y=1(y, . . .,y ) and z ( z > are arbitrary vectors
in CN, then the c, are equivalently the solut1on to the normal equations
k-1
jz=:o s un+j)cj = = U0 T =000, ke (2.8)

Finally, if we let UY be the generalized inverse of the matrix U, then
the vector ¢ is also given by

(2.9



RRE - Reduced Rank Extrapolation

Pick a positive integer k < N and form the matrix W by

R [N B RN (2.10)

and solve the overdetermined (and in general inconsistent) system of equations

wq - ~Un, (2.]])
where q = (qo, Qys - - - qk_]>T, by linear least squares. MWith dg» dy>
P R determined, set
Sk = ¥n * z: A3Un45° (2.12)
3<0
where Sk is the desired approximation to s.
The q; are equivalently the solution to the normal equations
z; Wit ney?8y = =y ud, =01, .. ., k-1, (2.13)

Also, if W' is the generalized inverse of the matrix W, then the vector ¢
is given by

q = -Wu,. (2.14)

Interest1ng1y enough, spy k for RRE, just like sp g for MPE, can be
expressed as in equation (2.5), with equation (2.6) holding true. Specifi-
cally, the gj and the correspond1ng Yj for RRE are related by

13 < k-1; (2.15)

'Yo =1 - qo; Yj = Qj_] - Qj, Yk = qk_]-

MMPE - Modified Minimal Polynomial Extrapolation

Pick a positive integer k < N and form the matrix U as in equa-
tion (2.2) and "solve" the overdetermined system of equations in equation (2.3)

for ¢ = (co, €1, - - - , Ck1)T, in the sense

QUc = -Qug, (2.16)
where Q is a fixed k x N matrix of full rank. Obviously the matrix QU of
equation (2.16) is k x k. If g, ..., q are the rows of the matrix Q,

then equation (2.16) can also be expressed as

}%} (g, un+j)cj = -(a;, U0 Ve gk, (.17




i < k, by equation (2.4), and sp k, by equation (2.5).

c.f. equation (2.8) for MPE. Now set cx = 1 and determine the vyj,
0 ¢

Determinantal representations for sp g exist both for MPE, RRE, and

MMPE, and they are of the form

where D(oo, SE , °k) is the determinant
0 M %k
Y0,0 Yo,1 Y.k
D(cro, O - - ck) = 2.19)
Yk-1,0 Uk-1,1 “k-1,k
and
(Un+i’ Un+j) for  MPE,
ui,j = (wn+i’ un+j) for  RRE, (2.20)
(qi+], un+j) for  MMPE.

When the oy are vectors D(oo, o , ck) is also a vector, and is

K
> o;N,, where N, is the cofactor of ;.

i=0

defined to be

sn,k for all three methods are determined from the

The approximations
. Xpsks S can easily be seen from their

kK + 2 vectors Xp, Xp+l
definitions.

As far as the implementation of MPE and RRE is concerned, a few alterna-
tives exist:

(1) Solution by least squares packages: Although feasible for small scale
problems, this approach may become very costly for large scale problems in
which N, the dimension of the vectors, is very large and Kk is not small.

We may even run into storage problems, as the present least squares soilvers
require the matrix of the equations to be solved (U for MPE and W for RRE)
to be stored in core memory. One way out of this limitation would be to modify
these solvers so that this matrix can be stored in a secondary storage device
like a disk, for example. Additional storage for the k + 2 vectors xp,

, Xnseke] 15 also required.



(2) Solution of normal equations: Although the conditioning of this
approach is less favorable than that for the previous one, the storage require-
ments for it are much lower. Actually, with appropriate programming, we can
see that only k + 2 wvectors, namely xp, Upn, Upsls - - - Un+k’ need to be
saved. That this is so can be shown as follows: Define Uj 3 = Wnsis Upgj)-

(a) For MPE the system of equations in equation (2.8) is entirely given

in terms of the Once the <cj, hence vyj have been obtained from equa-
tions (2.8) and (2 4} Sp,k i equation (2.5) can be computed from

Snk = z; (Up,is (2.21)

where the 51 can be determined recursively from the +y. through the
relations J

§0=1-Y Ey=Ffi -y d=T.2 .. k-, (2.22)
or the relations
1=V By =vyrEp d=k-lk-2,...,0 (2.23)

(b) For RRE the system of equations in equat1on (2.13) is determ1ned solely
in terms of the Uj ,jr since (Wpyj, Wneyd = Uje j41 + uj - u1 1, - u1,3+]
Once the g have been determined from equat1on ?2 13), $p ks obtained
directly from equation (2.12).

(3) Recursive computation: Both MPE and RRE can be implemented by some
recursive techniques that have recently been developed by Ford and Sidi
(ref. 6). These techniques are based on the determinant representations of
Sn.k given in equations (2.18) to (2.20). For details we refer the reader to
reference 6.

As for the implementation of MMPE, this can be done by either solving the
linear k x kK system in equation (2.17) for the <¢j, i = 0,1, . . . , k-1, and
then proceeding as in equations (2.4) and (2.5), or by using the recursive
techniques of reference 6.

The overhead in the implementation of MPE and RRE is largely due to the
scalar products that are needed, c.f. equation (2.8) for MPE and equation
(2.13) for RRE. To reduce this cost one might replace these inner products by
a pseudo inner product involving only part of the components of the vectors
x3. In computational fluid mechanics problems this could be done by excluding
some of the dependent variables from the inner product. In discretized
continuum problems, in general, one can also do this by excluding some of the
mesh points from the inner product.

The Teast expensive implementation in the above mentioned sense can be
achieved by MMPE if the vectors qj 1in equation (2.17) are picked such that
(ay, un+j) require almost no computation. This can be achieved by taking the
dj to be the fundamental basis vectors, which amounts to picking k out of
the N equations in equation (2.3) for determining c¢j, i = 0,1,. . . ,k-1.




One may, of course, consider other similar strategies, in which the vectors
gj have very few nonzero components.

Finally, we would like to mention some new extrapolation methods that have
been proposed in reference 19 and are akin to MPE and RRE. These methods
differ from MPE and RRE in the way the overdetermined systems of equa-
tions (2.3) and (2.11) are solved. The standard linear least squares method
minimizes the 2-norm of Uc + up,k__for MPE and of  Wq + u, for RRE, where
this norm is defined by |[|z]] = (z,z) with (y,z) as defined in equa-
tion (2.7). We can modify this norm to read ||z]|m = (z,Mz) for some
hermitean positive definite matrix M. Going further, we can choose to
minimize the (weighted) ep-norms of Uc + up,k and Wg + up. In particular,
the 27- and Qe-norms give rise to problems that can be solved using linear

programming techniques.

3. CONVERGENCE AND STABILITY OF VECTOR EXTRAPOLATION METHODS

We now state without proof some results concerning the convergence and
stability properties of MPE, RRE, and MMPE. These results are helpful in
understanding how these methods work, and how and when they can be used in an
effective manner. All our results are stated for those sequences that arise

from iterative solutions of linear systems of equations.
Let s be the unique solution to the linear system
X = AX + b, (3.1

where A is a constant N x N matrix, and b is a constant vector in cN.
Given «xp, an initial approximation to s, generate the vectors xj, x3,
, by the iterative method

Xj+1 = ij +b, j=0,0, ... . (3.2)
Let N, X2, . . ., A+ be the distinct eigenvalues of the matrix A, and
let vy, v, . . ., vy be corresponding eigenvectors. Obviously r < N.

Assume for simplicity that A is diagonalizable so that the initial error
Xo - $ can be expressed in the form

r
Xg = S = EE% &V (3.3)
for some scalars a; - Consequently

-
n
xn-s=i§ VA, n=1,2, . (3.4)

The assumption that equation (3.1) has a unique solution implies that x; = 1
for all i. MWithout loss of generality we can further assume that (1) X3 # 0
for all i, since a zero eigenvalue does not contribute to equation (3.4) for
n>1,and (2) aj # 0 for all i, since if «j =0 for i =1', then we can
discard it from equation (3.4) and rename the eigenvalues.



Let us now order the Xj such that
T > gl > gl s . . (3.5
We now state a convergence theorem for MPE, RRE, and MMPE, whose proof
can be found in references 15 and 19.
Theorem 3.1. Assume
I > 12kl (3.6)
Then, for both MPE and RRE, the approximations sp x to s satisfy
Snk - 8 = T gye1|", (3.7
where the vector TI(n) is such that
[T ] = 0(1) as  n » o, (3.8)

k

and is proportional to I (\f - 1-1. Furthermore, if we denote the yi in
i=1
(n,k>

equations (2.5) by Y; to stress their dependence on n and k, then
k n
kK A - k A
(n k) k+1 -
z; =1 Y ( _i;— ) as N » o, (3.9)

i=1
Equations (3.7) to (3.9) hold also for MMPE provided
(q],v]) .o (q],vk)
' N (3.10)
(qk;v]) G (qk:vk)

Note that the results stated in Theorem 3.1 concern the strategy in which
first a large number of iterations have been performed through equation (3.2)
and then MPE or RRE or MMPE had been applied with fixed k. As such, Theorem
3.1 has the following important implications:

(1) If MPE or RRE or MMPE is applied to the vector sequence xg,X7,
. , beginning with xp, for large n, then provided (3.6) holds, the error
in sp g, the desired approximation, behaves 1ike [M411". In view of the
fact that the error in xp,ks1 behaves like [x\|" for n large, and
It > [2ks1], all three methods accelerate the convergence of the sequence
X0,X1.X2, . . . , when the latter converges. Furthermore, even when this
sequence does not converge, i.e. |k1| > 1, spk converges to s as n
becomes large, provided |xk+1| ¢

In some applications the matrix A may have several distinct dominant
eigenvalues that are all equal to the spectral radius p(A) in modulus. In



order to achieve acceleration in such cases we need to take k at least equal
to the number of these eigenvalues.

are very close to 1 as is the case in many prob-

(2) If some of the Xj
may deteriorate, as the error in

lems of interest, then the quality of Sn kK
k 3
. . -1
Sn,k is proportional to 151 (xi -1
tation of Sy ok My become numerically unstable in this case as is seen from

equation (3.9). Specifically, the coefficients of the polynomial

for n large. In fact, the compu-

k

n - xi)/(l - xi)] are large when some of A .o o4 X are very close
=1 (n,k) o

to 1 in the complex plane. Thus the Y; *~7, being approximations to these

coefficients, are large too, although their sum equals 1, c.f. equation

(2.6). This means that errors (round-off, in general) in the vectors xj are
magnified severely in the computation of sp g, resulting in instability. One
suitable way of overcomlng this problem is to apply MPE, RRE, or MMPE to the
sequence yj i) ] =0,1, ..., p being an 1nteger greater than 1. HWith

this equat1on (3 is now replaced by

.
= X avpt, n=1,2, ... , (3.4)"
1M1

where By = x? , T =1,2,. By picking p large enough we can cause My

My to be far from 1 in the complex plane, thus stabilizing the converg-

ence acceleration methods. It is interesting to note that equation (3.2)

becomes
pj. Rl g : .
yj+] = A yj + ;E% A'b, j=0,1, ... . (3.2)

(3) The already computed Yjs 0 < j <k, can be used for estimating Ay,
In fact, the zeros of the poly-

s - xk, the largest eigenvalues of A.

k .
nomial Y ijJ are the estimates of interest. If we denote these zeros by

j=0
k](n), e, xk(n), then with appropriate ordering

N n
k+1 .
A(n) - A =0 as N *» o, 1 ¢j <k, (3.1
J J )‘j - -

see reference 17.

We note that the results of Theorem 3.1 and equation (3.11) do not hold as
they are, in general, when the matrix A is not diagonalizable, although simi-
lar but slightly complicated results for this case exist. For the precise
statements and proofs of these results see reference 18.

10



As has already been mentioned, Theorem 3.1 above explains the convergence
and stability properties of MPE, RRE, and MMPE when k is held fixed and n
is increasing. Another obvious use of these methods is one in which n s
kept fixed and k s increasing. An error analysis for this use, pertaining
to MPE and RRE, has been given in reference 16. Part of this analysis is sum-
marized in the following theorem. For simplicity we fix n = 0 and consider
the sequence sk = sg,k, k=0,1,2, . . ., with sgp = s9,0 = Xxo-

Theorem 3.2 Let the matrix C =1 - A be such that Ch = (C + C*)/2, the
hermitian part of C, is positive definite. (This implies that all
eigenvalues of C have positive real parts.) Then for some appropriate norms

[fel]"
|5 - s||" <L |5 - s||", (3.12)

where L 1is a constant independent of k, dependent on the norm and the
extrapolation method, and Ty is the minimum of ||Q(C)||, the natural

matrix Qp-norm of Qx(C), over all polynomials Q(z) of degree at most k
satisfying Qx(0) = 1. Let now F(d,c,a) be the smallest ellipse that
contains all the eigenvalues of C and is itself contained in the right half
of the complex plane, such that its center is at d, its foci are at dxc, and
its semimajor axis length is a. Then Tk in (3.12) can be bounded as

r, < k™, (3.13)

where f is a constant independent of k, m is a fixed nonnegative integer,
and n is given by

n = exp(¢-Rew) < 1
(3.14)
with ¢ = cosh-1(a/[c|> and w = cosh-1(d/c).

(When the matrix C(or A) is diagonalizable m = 0.) Consequently, we can
replace (3.12) by

Hsk-sH"ng‘“nkHso-sll", T = Ls. (3.15)

Connections with Krylov Subspace Methods

It is furthermore shown in reference 16 that MPE and RRE are Krylov sub-
space methods and that they are equivalent to the Arnoldi method and the method
of generalized conjugate residuals respectively, when the latter are being used
for solving the equations Cx = b with the matrix C as in Theorem 3.2.
Recall that when C is hermitian the Arnoldi method reduces to the method of
conjugate gradients and the method of generalized conjugate residuals reduces
to the method of conjugate residuals. In this sense then MPE is a generaliza-
tion of the Arnoldi method, which in turn, is a generalization of the method
of conjugate gradients. Similarly, RRE is a generalization of the method of
generalized conjugate residuals, which in turn, is a generalization of the
method of conjugate residuals. For details and the relevant literature see
reference 16. Although MPE and RRE can be applied in a very straightforward
way to the vector sequence obtained by a fixed point iteration technique, for
nonlinear as well as linear problems, the other methods require some kind of
local linearization for nonlinear problems that may increase the cost of
acceleration depending on how the linearization is performed.

1



From what has been said in the previous section it is obvious that we
would not be interested in increasing k indefinitely as this would require an
increasing amount of storage. From Theorem 3.2 however, it is easy to see that
the following strategy, which has been designated “"cycling" in reference 20 is
useful in solving a system of the form x = F(x):

Step 1. Pick séO) =] Xo arbitrarily and set q = 1.

Step 2. Generate X1s 0 X by Xj+1 = F(xj), j=0,1, . ..,k
Step 3. Use MPE, RRE, or MMPE to compute sg from xy.Xq, - . ., X,;-
Step 4. If séq) is a satisfactory approximation, stop; otherwise, replace

Xo by séq) ,and q by q+!, and go to Step 2.

If F(x) is a linear function of x, then Theorem 3.2 can be used to prove

that
(q) 0)
;| _ s|l er> “ “ . (3.16)

This implies that taking k sufficiently large we can cause LIk < TkMnK ¢ 1.
This, by (3.16), guarantees the convergence of cycling. (3.16) for this case
also suggests that cycling is a linearly converging process.

In case Ay, . . ., A are very close to 1 we can modify Steps 2 and 3
to read
Step 2'. Generate yg, Y1, - - ., Yks1 bY Xj41 = F(x32, 3 = 0,1,
, p(k+1) - 1, and Yj = Xpj> j=20,1, . s g+].

Step 3'. Use MPE, RRE, or MMPE to compute séq) from yo, Y1, - - -, Yke1-

This helps to stabilize the extrapolation process.

4. APPLICATIONS

We shall now mention some applications to computational fluid mechanics
problems. In this respect the following remarks are important.

(1) Practically no acceleration is achieved for problems that use explicit
schemes. The addition of even a small amount of implicitness, such as the
implicit residual averaging (ref. 8), makes the scheme quite suitable for
acceleration. We note that the implicit residual averaging is a simple device
that acts like a filter on the approximate solution produced by the explicit
scheme, and can be added to the scheme without making any changes in it.

(2) The vectors that are processed by the extrapolation methods must
include the boundary values as a rule. This is especially so for problems in
which the boundary values are time-dependent. Going back to the discussion of
our introduction the discrete operator ¢ in equation (1.3) also contains the
boundary values when these are time-dependent. Thus the boundary values
influence the in the extrapolation process, and are influenced by the Yj-
(Time- 1ndependen% boundary conditions, however, neither influence, nor are
influenced by, the Yj in the extrapolation methods.>

12




(3) As they are described in the previous sections, the extrapolation
methods operate on the vectors xg, X3, . . . , in a global manner, i.e., the
v's in equation (2.5) are the same for all components of the vectors x5. In
some applications we may want to apply these methods to different portions of
the vectors Xj separately, and this may produce more acceleration in some
problems. For computational fluid mechanics this may amount to accelerating
each of the dependent variables separately.

Example 1. Ducted Flow Over an Axisymmetric Center Body

The duct is cylindrical in shape and the center body is the hub of that
found on the General Electric unducted fan. The flow is assumed to be
inviscid, and thus the Euler equations are solved. In addition, the flow is
assumed to be axisymmetric.

This problem was solved by using two three-dimensional codes that employed
the same mesh.

The first code uses an explicit finite volume four-stage Runge Kutta
scheme patterned after Jameson, Schmidt, and Turkel (ref. 9). The dependent
variables for this code are pu, pv, pw, p, peg, Where u, v, and w are the
axial, radial, and circumferential components of the velocity in cylindrical
coordinates, p 1is the density, and ey is the total internal energy per unit
volume. The scheme also contains artificial viscosity. It is supplemented by
local time-stepping and by implicit residual averaging in the axial and radial
directions. For a proper description of this scheme see reference 4.

The second code uses an implicit finite volume flux-vector splitting
scheme. The dependent variables for this scheme are pu, pv, pW, p, and peg
as in the first code, except that now wu, v, and w stand for the components
of the velocity in Cartesian coordinates. For a proper description of the
scheme used in this code see reference 1.

The mesh used by both codes consists of 56 points in the axial direction
and 7 points in the radial direction. The first code also requires a minimum
of 5 points in the circumferential direction as dictated by the fourth order
difference employed in representing the artificial viscosity. We chose to have
7 equally spaced points in the circumferential direction their spacing being
2w/56 rads. If periodicity is imposed in the numerical solution of an axisym-
metric problem, then there should be no variation in the circumferential direc-
tion. This was achieved to machine accuracy in the iterative scheme used in
the first code. The mesh employed was generated algebraically as described in
reference 13, and it is shown in figure 1.

Both codes were run at a Mach number of 0.60, where the critical Mach
number for this problem is approximately 0.62.

In figures 2(a) to 3(b) there are six curves numbered 1, 2, . . . 6.
Curve number 1 is for the 2p-norm of the error associated with all five
dependent variables. Curves number 2, 3, . . . , 6, are for the @p-norms of

the errors associated with p, pu, pv, pW, and pey respectively.

Figure 2(a) shows the results obtained by using the first code without
extrapolation. As is seen the residual history gets into the linear regime
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after 1000 iterations. Figure 2 shows the results obtained by the first code
with extrapolation being applied only once to the sequence Xp, Xp4p, Xn+2p»

- s Xps(k+1)p With n =700, p = 10, and k = 20. The approximation
obta1ned by the extrapolatlon method is then used as the new x5 and new vectors
are obtained from it by iteration. MWe see that with only one extrapolation the
29-norm of the error has dropped from about 10-4-3 to about 10-6-8, resulting in
a gain of about 2.5 orders of magnitude. The jump in the 2s-norm of the
residual vector for pw, to circumferential momentum per unit volume, is a

k
result of ) lyj| being relatively large. This can be explained as follows:
j=0
Theoretically pw 1is supposed to be zero. Because we are using a three-
dimensional code we can achieve at best machine zero for pw, and this is the
case for the first code. Thus the residual vectors associated with pw are at
best machine zero. By equation (2.5) then pw and hence its residual are of

K

order ( |y |) e, where e 1is the norm of the residual for pw. Fig-
j=0

ure 2(c) shows the results obtained from the first code with extrapolation in

the cycling mode starting at the 100th iteration, with p = 10 and k = 20

again. MWe again observe a substantial amount of acceleration. However, the

amount of acceleration now is smaller than that we observe in figure 2(b).

The reason for this may be that we are applying the extrapolation method much

before the residual history reaches the linear regime. The jumps in the

2o-norm of the residual vector associated with pw can be explained as above.

Figure 3(a) shows the results obtained by using the second code without
extrapolation. Figure 3(b) shows the results obtained by the second code with
extrapolation in the cycling mode starting at the 10th iteration with p =1
and k = 10. We see from this figure that with the second code (involving
implicit flux-vector splitting) cycling, even when started very early in the
iteration process, is very effective in this case. A reduction of approxi-
mately 9 orders of magnitude is achieved without extrapolation in 1000 itera-
tions, whereas with extrapolation this takes only 500 iterations. Also machine
zero is reached in about 1400 iterations without extrapolation and in about 800

with extrapolation.

Before closing we also mention that we assessed the rates of convergence
of both codes by estimating the largest eigenvalues of the Jacobian matrix
¢ '(U). We recall that this is done by solving the polynomial equation

2: y = 0, where the +vy's are those associated with Sk for n suffi-
g12ntly large, c.f. equations (3.9) and (3.11). The modulus of the largest
zero of the polynomial 2: ijj is an estimate for ply'(U)], the spectral
radius of ¢'(0). The information on the largest eigenvalues of ¢'(U) is then
also used in deciding what values to take for p and k.
Example 2. Flow Over a Single-Blade Row Unducted Fan
The geometry consists of an eight-bladed unducted fan designed to operate

at a free-stream Mach number of 0.80 and advance ratio 3.1145. The hub for
this fan is the one that was considered in Example 1.
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We again assume the flow to be inviscid, thus we are solving the Euler
equations in this case too.

The code used in this example is the first code that was used in
Example 1. However, this time the implicit residual averaging is used in all
three directions.

The mesh used by the code consists of 88 points in the axial direction,
23 points in the radial direction, and 11 points in the circumferential
direction across one blade pitch. Ten points lie on each blade axially, and
11 points, radially from the hub to the blade tip. A sting whose diameter is
equal to the sting at the hub exit is affixed to the front of the nacelle.
The mesh is generated algebraically as described in reference 13, and is shown
in detail in reference 4.

The six curves shown in figures 4(a) and 4(b) and numbered 1, 2, . . ,
6, again correspond respectively to the &p-norms of the res1duals assoc1ated
w1th all five dependent variables, with p, pu, pv, pw, and pey respectively.

Figure 4(a) shows the residuals obtained without extrapolation. As is
seen the residuals drop by about 2.5 orders of magnitude in 1000 iterations.
Figqure 4(b) shows the residuals obtained by employing RRE in the cycling mode
starting at the 100th iteration with p =10 and k = 20. The amount of
acceleration achieved by doing this is quite substantial, in that in 1000
iterations the residuals drop by 4.5 orders of magnitude.
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FIG. 1 AXISYMMETRIC CENTER BODY GRID FOR EXAMPLE 1.
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